Model Predictive Control for Collision Avoidance

This project explores the application of Model Predictive Control (MPC) in a wheeled robot. MPC optimizes the control inputs over a finite horizon to predict the robot's trajectory. The project includes simulations of robots navigation. he wheeled robot uses a kinematic model to follow a reference trajectory to the goal.

Simulation Results

Animations

The following animations illustrate the real-time process of the MPC algorithm in various scenarios. These animations provide a visual representation of how the algorithm dynamically adjusts the robot's path.

Scenario 1: MPC Scenario 1

Scenario 2: MPC Scenario 2

Scenario 3: MPC Scenario 3

Scenario 4: MPC Scenario 4

Scenario 5: MPC Scenario 5

Scenario 6: MPC Scenario 6

Scenario 7: MPC Scenario 7

Scenario 8: MPC Scenario 8

Scenario 9: MPC Scenario 9

Static Images

The following static images illustrate the trajectories planned by the MPC algorithm in different scenarios. Each image shows the reference trajectory, the actual trajectory, and the control inputs used by the robot.

Scenario 1: MPC Scenario 1

Scenario 2: MPC Scenario 2

Scenario 3: MPC Scenario 3

Scenario 4: MPC Scenario 4

Scenario 5: MPC Scenario 5

Scenario 6: MPC Scenario 6

Scenario 7: MPC Scenario 7

Scenario 8: MPC Scenario 8

Scenario 9: MPC Scenario 9